How To Debug Memory Dumps
From time to time, we're faced with the dreaded BSOD, or bugcheck, on a Windows machine. The procedures below guide you through the steps necessary to analyze and debug dump files.
Download and install the Microsoft Debugging Tools from http://www.microsoft.com/whdc/devtools/debugging/installx86.mspx

Go to Start | All Programs | Debugging Tools For Windows | WinDbg.
Click on File | Symbol File Path, enter SRV*c:\symbols*http://msdl.microsoft.com/download/symbols and click OK.

Click File | Save Workspace so that your symbols path is saved for future use.
Now locate your memory dumps. Small memory dumps are usually located in %systemroot%\minidump and Kernel memory dumps are located in %systemroot%\MEMORY.DMP.

Go to File | Open Crash Dump and load the file. You may get a message to save base workspace information. Choose No.

Now you will get a debugging screen. It may take a little bit to run, since the symbols are downloaded as they are needed. Then you will see information such as:
Microsoft (R) Windows Debugger Version 6.7.0005.0

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [\\hoem02\c$\windows\MEMORY.DMP]

Kernel Summary Dump File: Only kernel address space is available

Symbol search path is: SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

Windows Server 2003 Kernel Version 3790 MP (4 procs) Free x86 compatible

Product: Server, suite: TerminalServer SingleUserTS

Built by: 3790.srv03_gdr.050225-1827

Kernel base = 0xe0b49000 PsLoadedModuleList = 0xe0be66a8

Debug session time: Wed May 9 02:01:49.965 2007 (GMT-7)

System Uptime: 6 days 22:51:23.840

Loading Kernel Symbols

..

Loading User Symbols

PEB is paged out (Peb.Ldr = 7ffff00c). Type ".hh dbgerr001" for details

Loading unloaded module list

..

* *

* Bugcheck Analysis *

* *

Use !analyze -v to get detailed debugging information.

BugCheck A, {4, 2, 0, e0b6136d}

Probably caused by : volsnap.sys (volsnap!VspWriteVolumePhase35+3a)

Followup: MachineOwner

So far, we can tell that the bugcheck was caused by volsnap.sys, which is the Microsoft volume shadow copy driver. Use !analyze -v to get detailed debugging information. The most useful information is at the top of the analysis:

* *

* Bugcheck Analysis *

* *

IRQL_NOT_LESS_OR_EQUAL (a)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If a kernel debugger is available get the stack backtrace.

Arguments:

Arg1: 00000004, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: e0b6136d, address which referenced memory

From here, we can tell that volsnap.sys tried to read memory from an IRQL that was too high. This is usually caused by a bad driver, in this case, volsnap.sys.

Next, let's find out what process was calling volsnap.sys. Enter !thread in the kd> command line input box and look for the line that begins with Owning Process:
2: kd> !thread

THREAD faa03658 Cid 0568.1954 Teb: 7ffac000 Win32Thread: 00000000 RUNNING on processor 2

Not impersonating

DeviceMap e1003978

Owning Process fc1913b0 Image: cvd.exe

Wait Start TickCount 38443765 Ticks: 0

…

Now enter !process fc1913b0 0 (the hex number of the Owning Process) , a space and the number 0.
2: kd> !process fc1913b0 0

PROCESS fc1913b0 SessionId: 0 Cid: 0568 Peb: 7ffff000 ParentCid: 0218

 DirBase: dd4a3000 ObjectTable: e141a910 HandleCount: 475.

 Image: cvd.exe
We can now tell that the cvd.exe process (in this case, Commvault) called the volsnap.sys driver. Since volsnap.sys is a Microsoft driver, a quick check on TechNet reveals that there is an updated VSS package available for our server (http://support.microsoft.com/kb/887827) which addresses the problem.
Note: Writing debugging information must be configured on the machine prior to the BSOD in order to get a memory dump. This is done in the Advanced tab of system properties. Set it to "Kernel memory dump" in order to get the process information.
